ATOMIC ENERGY EDUCATION SOCIETY, MUMBAI

CLASS: XII(MATHS) HANDOUT: MODULE 2/4 CHAPTER-5 TOPIC: CONTINUITY AND DIFFERENTIABILITY

1) DIFFERENTIABILITY

A function f(x) is said to be differentiable at a point x = a if the

Left hand derivative (at x = a) = Right hand derivative at (x = a)

i.e LHD $_{at x = a} = RHD_{at x = a}$

Here LHD = $\lim_{h\to 0^-} \frac{f(a+h)-f(a)}{h}$ and RHD = $\lim_{h\to 0^+} \frac{f(a+h)-f(a)}{h}$

Every differentiable function is continuous but every continuous function is is not differentiable

The process of finding the derivative is called differentiation 2) RULES OF DIFFERENTIATION

1) If
$$y = f(x) \pm g(x)$$
 then $\frac{dy}{dx} = \frac{d}{dx}f(x) \pm \frac{d}{dx}g(x)$

2) If
$$y = f(x) g(x)$$
 then $\frac{dy}{dx} = f'(x)g(x) + g'(x)f(x)$ (Product rule)

3) Let
$$y = \frac{f(x)}{g(x)}, g(x) \neq 0$$
 then $\frac{dy}{dx} = \frac{g(x)f'(x) - f(x)g'(x)}{(g(x))^2}$

4) Chain Rule : Let y = f(t), t = g(x) then $\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx}$ when $\frac{dy}{dt}$ and $\frac{dt}{dx}$ both exists.

3) DIFFERENTIATION OF IMPLICIT FUNCTIONS

If the dependent variable y and independent variable x are complex in an equation that y cannot be written explicitly as function of x then f(x) is said to be an implicit function. To find the derivative of such functions we use the following steps

Step:1 – Differentiate both the sides of the equation w.r.to x (Independent variable)

Step: 2 – Use chain Rule

Step :3 – Use product rule , quotient rule (if required)

Step:4 – Combined the $\frac{dy}{dx}$ terms and simplify
